
 

Windows Vista APC Internals 
 

By Enrico Martignetti 

First edition, May 2009 

 

Sample Code 

PDF Version 

Home

If you are interested in the internals of 

Windows, check out Enrico Martignetti's 

book on the Virtual Memory Manager. 

Click here to find out more. 

http://www.opening-windows.com/techart_apctest_download.html
http://www.opening-windows.com/download/apcinternals/2009-05/windows_vista_apc_internals.pdf
http://www.opening-windows.com/home.html
http://www.opening-windows.com/wmip/overview.htm


2 

 

 

Table of Contents 
 

Introduction And Acknowledgements ...................................................................................................... 4 

APC Basic Concepts ............................................................................................................................... 4 

APC Process Context ............................................................................................................................. 4 

APC Types .............................................................................................................................................. 5 

APC Initialization ..................................................................................................................................... 6 

Initial APC Scheduling ............................................................................................................................. 8 

Special And Regular Kernel Mode APCs ................................................................................................ 9 

Scheduling ........................................................................................................................................... 9 

Linking _KAPC to Its List ................................................................................................................. 9 

Directing The Thread to Execute The APC ..................................................................................... 9 

Triggering Thread Dispatching ...................................................................................................... 19 

Delivery .............................................................................................................................................. 19 

Effect of _KTHREAD.SpecialApcDisable Being Set ...................................................................... 20 

Kernel APC Delivery When SpecialApcDisable Is Clear ............................................................... 21 

Special Vs. Regular Kernel APCs ..................................................................................................... 23 

User Mode APCs .................................................................................................................................. 23 

Scheduling ......................................................................................................................................... 23 

Linking _KAPC to Its List ............................................................................................................... 24 

Directing The Thread to Execute The APC ................................................................................... 24 

nt!PsExitSpecialApc and The Special User APC .......................................................................... 24 

Triggering Thread Dispatching ...................................................................................................... 25 

Delivery .............................................................................................................................................. 25 

nt!KiDeliverApc Invocation ............................................................................................................. 25 

Effect of User Mode APCs on Kernel Wait Functions ................................................................... 26 

nt!KiDeliverApc for User APCs ...................................................................................................... 27 

nt!KiInitializeUserApc And The User Mode Context ...................................................................... 28 



3 

 

User Mode APC Delivery by ntdll!KiUserApcDispatcher ............................................................... 30 

ntdll!NtContinue And The User Mode Context .............................................................................. 30 

Appendix - The Test Driver ................................................................................................................... 31 

IMPORTANT WARNING ................................................................................................................... 31 

Driver Package Contents ................................................................................................................... 31 

Driver.............................................................................................................................................. 32 

TestClt ............................................................................................................................................ 32 

CommonFile ................................................................................................................................... 32 

Loading And Running The Driver ...................................................................................................... 32 

What The Driver Can Do ................................................................................................................... 32 

APC Spurious Interrupt Test .......................................................................................................... 32 

Sample Trace ................................................................................................................................. 34 

Atypical Traces .............................................................................................................................. 36 

APC Disable Test ........................................................................................................................... 39 

APC User Mode Test And APC User Mode Test #2 ..................................................................... 39 

References ............................................................................................................................................ 40 

 



4 

 

Introduction And Acknowledgements 
There are several articles on the subject of Windows APCs and in particular Inside NT's 

Asynchronous Procedure Call by Albert Almeida (Dr. Dobb’s Journal, Nov 01, 2002) contains a good 

deal of information about them. To be fair, that article has guided me throughout the writing of this 

one. My attempt has been to add a few more details to the concepts presented and a little insight into 

undocumented Windows features, like the GATEWAIT and DEFERREDREADY thread states, which 

are tied to how APCs work. 

Furthermore,  Almeida’s article was published when Windows XP was current, so another goal of this 

work has been to revise the information presented there for Windows Vista. Unless otherwise 

specified, all the material contained here has been verified agains the Windows Vista SP1 Ultimate 

Edition code (for x86). 

APC Basic Concepts 
APCs are a Windows functionality that can divert a thread from its regular execution path and direct it 

to execute some other code. The most important thing about an APC is that when one is scheduled, it 

is targeted to a specific thread. 

 APCs are little documented: the kernel APIs to use them are not public and their inner working is only 

partially covered. What makes them interesting is that they are tied with the way Windows dispatches 

threads, thus, by analyzing them we can better understand this core Windows feature. 

Windows internals books often mention the fact that an APC is scheduled by means of a software 

interrupt. This raises the question of how can the system guarantee that this interrupt will run in the 

context of a particular thread. This is, ultimately, the purpose on an APC, but software interrupts can 

break into the execution of whatever thread is current. We will see in this document how Windows 

accomplishes this. 

Code executed by means of an APC can run, depending on the APC type, at a dedicated IRQL level, 

which, not surprisingly, is called APC level. 

So, what are APCs used for? Among other things: 

 The I/O manager uses an APC to complete an I/O operation in the context of the thread which 

initiated it. 

 A special APC is used to break into the execution of a process when it must terminate. 

 The kernel implementation of APCs is under the hood of  Windows API functions like 

QueueUserAPC and ReadFileEx/WriteFileEx, when used to perform asychronous I/O. 

APC Process Context 
Normally, a Windows thread executes in the context of the process which created it. However, it is 

possible for a thread to attach itself to another process, which means it will execute in its context. 

Windows accounts for this when managing APCs: they can be scheduled to run in the context of the 

process which owns the thread, or in the context of whichever process the thread is currently attached 

to.  
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A detailed explanation of how this is achieved can be found in [1] in the section titled APC 

Environments. I did not revise this material for Windows Vista, however, all the APC control variables 

described there are still present and used in the rest of the Vista APC implementation. Below is a 

summary of the Environments section 

Windows maintains the state of APCs waiting to execute in the _KAPC_STATE data structure, shown 

below (output from the WinDbg dt command): 

kd> dt nt!_KAPC_STATE 

   +0x000 ApcListHead      : [2] _LIST_ENTRY 

   +0x010 Process          : Ptr32 _KPROCESS 

   +0x014 KernelApcInProgress : UChar 

   +0x015 KernelApcPending : UChar 

   +0x016 UserApcPending   : Uchar 

 

The main kernel data structure _KTHREAD has two members of type _KAPC_STATE, named 

ApcState and SavedApcState, which are called APC environments. ApcState is the environment for 

APCs targeted at the current thread context: regardless of whether the thread is attached to its own 

process, or another one, this member contains APCs for the current process context and therefore 

deliverable ones. SavedApcState stores APCs for the context which is not current and that must wait. 

For instance, if the thread is attached to a process other than its owner and there are APCs for the 

owner process, they go into SavedApcState and have to wait until the thread detaches from the other 

process. 

From the explanation above, we can understand that when a thread attaches itself to another 

process, ApcState is copied into SavedApcState and re-initialized. When the thread detaches itself, 

ApcState is restored from SavedApcState, which is then emptied.  Also, we can see that the kernel 

components responsible for dispatching APCs, always look into ApcState for delivarable ones. 

The _KTHREAD structure also stores an array of 2 pointers called ApcStatePointer, whose members 

hold the addresses of ApcState and SavedApcState (that is, they point inside _KTHREAD itself). The 

kernel updates these pointers so that the first one always points to the APC environment for the 

thread owning process and the second one points to the environment for an eventual process the 

thread is attached to. 

For instance, if the thread is not attached to another process, the Environment for the owning process 

is also currently active, therefore it is stored into ApcState and ApcStatePointer[0] holds the address 

of ApcState. 

Finally, _KTHREAD.ApcStateIndex stores the index of the pointer to ApcState, i. e. the active 

environment. Thus, if the thread is attached to another process, the owning process environment is 

into SavedApcState, ApsStatePointer[0] points to SavedApcState, because it always points to the 

owning process environment. In turn, ApcStatePointer[1] points to ApcState, because it always points 

to the attached process environment. Finally, ApcStateIndex is set to 1, because it is 

ApcStatePointer[1] which is pointing to the active environment. 

When we schedule an APC, we can specify that we want to add it to the environment for the owning 

process (i. e. the one pointed by ApcStatePointer[0]), to the secondary one (ApcStatePointer[1]) or to 

whichever environment is currently active (i. e. the one at ApcState, no matter what). 

APC Types 
APCs come in three kinds. 
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Special kernel mode APCs execute kernel mode code at APC IRQL (i. e. 1). They are truly 

asynchronous events that divert a thread from its normal execution path to the kernel mode function 

to be executed, which is called KernelRoutine. 

If an SK APC is queued to a thread which has entered a waiting state by calling one of the four 

waiting routines KeWaitForSingleObject, KeWaitForMultipleObjects, KeWaitForMutexObject, or 

KeDelayExecutionThread, the thread is awakened to execute the KernelRoutine and will re-enter its 

waiting state afterwards. 

Normally, SK APCs are always delivered as soon as the target thread is running and its IRQL drops 

below APC level. However, APC delivery can be disabled on a thread by thread basis. When the 

SpecialApcDisable member of the _KTHREAD structure is not 0, APC delivery does not occur for the 

corresponding thread, not even for SK APCs. 

Regular kernel mode APCs execute kernel mode code at PASSIVE IRQL. Like SK APCs they can 

break into the execution of threads and bring them out of waiting states. However, they are 

dispatched only under more restrictive conditions, which will be detailed later. 

User mode APCs call user mode code and are executed under even more restrictive conditions than 

kernel mode ones: they are dispatched to a thread only when it willingly enters an alertable wait state 

(except for one special case, detailed later). This happens when a thread calls one of the four waiting 

routines KeWaitForSingleObject, KeWaitForMultipleObjects, KeWaitForMutexObject, or 

KeDelayExecutionThread with Alertable = true and WaitMode = User. 

Thus, normally, U APCs don’t asynchronously break into the execution of a thread. They are more 

like a form of queueable work items: they can be queued to a thread at any time and the thread code 

decides when to process them. 

APC Initialization 
An APC is represented by the _KAPC structure which can be examined in WinDbg with the command 

dt nt!_KAPC. The output from the command is shown below: 

kd> dt nt!_KAPC 

   +0x000 Type             : UChar 

   +0x001 SpareByte0       : UChar 

   +0x002 Size             : UChar 

   +0x003 SpareByte1       : UChar 

   +0x004 SpareLong0       : Uint4B 

   +0x008 Thread           : Ptr32 _KTHREAD 

   +0x00c ApcListEntry     : _LIST_ENTRY 

   +0x014 KernelRoutine    : Ptr32     

   +0x018 RundownRoutine   : Ptr32     

   +0x01c NormalRoutine    : Ptr32     

   +0x020 NormalContext    : Ptr32 Void 

   +0x024 SystemArgument1  : Ptr32 Void 

   +0x028 SystemArgument2  : Ptr32 Void 

   +0x02c ApcStateIndex    : Char 

   +0x02d ApcMode          : Char 

   +0x02e Inserted         : Uchar 

 

A _KAPC structure is initialized by calling nt!KeInitializeApc, which has the following (undocumented) 

prototype: 
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NTKERNELAPI VOID KeInitializeApc ( 

IN PRKAPC Apc, 

IN PKTHREAD Thread, 

IN KAPC_ENVIRONMENT Environment, 

IN PKKERNEL_ROUTINE KernelRoutine, 

IN PKRUNDOWN_ROUTINE RundownRoutine OPTIONAL, 

IN PKNORMAL_ROUTINE NormalRoutine OPTIONAL, 

IN KPROCESSOR_MODE ApcMode, 

IN PVOID NormalContext 

); 

 

This prototype was published in [1] and is still valid for Windows Vista SP1. 

Calling nt!KeInitializeApc does not schedule the APC yet: it just fills the members of the _KAPC. To 

actually schedule the APC one more step will be required. 

Ke InitializeApc sets the Type field to a constant value (0x12) which identifies this structure as a 

_KAPC and the Size field to 0x30, i.e. the size of the structure rounded up to a multiple of 4. 

The Thread field is set to the corresponding function parameter and contains a pointer to the 

_KTHREAD for the thread the APC is intended for. 

The ApcListEntry is not set by nt!KeInitializeApc. Rather, it is used when the APC is actually 

scheduled, to chain it to a list of pending APCs for the thread. 

The KernelRoutine field, taken from the function input parameter, stores a pointer to the function to be 

called when the APC is dispatched. This is the actual code which will be executed in the context of 

the thread targeted by the APC. Every APC has a KernelRoutine and, depending on its type it can 

have a NormalRoutine as well. 

The function pointed by KernelRoutine is called at APC IRQL. 

The  NormalRoutine and ApcMode function parameters determine the type of the APC. 

If NormalRoutine is 0, this is a special kernel mode APC. 

For this kind of APCs nt!KeInitializeApc sets _KAPC.ApcMode to  0, which stands for kernel mode 

and _KAPC.NormalContext to 0. The corresponding function parameters are ignored.  

If NormalRoutine is not 0 and ApcMode is set to 0, this is a regular kernel mode APC;  

_KAPC.ApcMode and _KACP.NormalContext are set from the function parameters. 

This kind of APC will still execute kernel mode code, as denoted by ApcMode = 0, but it is less 

privileged than a special one, which means it can be executed only under certain conditions, which 

will be detailed later. NormalRoutine is stored in the corresponding _KAPC member and is the 

address of a function which will be called when the APC is delivered. 

When such an APC is serviced, the KernelRoutine is called first, at APC IRQL. Afterwards, the 

NormalRoutine is called at PASSIVE IRQL. Both functions execute in kernel mode. 

As we will see in more detail later, the KernelRoutine has a chance to prevent the execution of the 

NormalRoutine or to change the address which will be called, before the NormalRoutine comes into 

play. 
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If NormalRoutine is not 0 and ApcMode is set to 1, this is a user mode APC, which will therefore call 

the NormalRoutine in user mode. 

For user mode APCs, nt!KeInitializeApc sets the _KAPC.ApcMode and _KAPC.NormalContext 

members to the value of its corresponding input parameters. 

The NormalContext field is passed to both the kernel routine and the normal routine when they are 

called. 

SystemArgument1 and 2 are not set by nt!KeInitializeApc. Instead, they are set when an APC is 

scheduled and they are passed to the callback routines as well. We will see this process in much 

more detail later. 

ApcStateIndex determines the environment the APC is for and will later be used as an index into the 

ApcStatePointer array of the thread, to select the _KAPC_STATE where to store the APC. If it has 

any value other than 2, nt!KeInitializeApc stores this value in the corresponding _KAPC field. If it is 2, 

the function sets _KAPC.ApcStateIndex to the value of _KTHREAD. ApcStateIndex for the input 

thread. Thus, the value 2 means: schedule the APC for whatever environment is current when 

nt!KeInitializeApc is called. 

Finally, the Inserted field is set to 0 by nt!KeInitializeApc and this represents the fact that this APC has 

not been queued to its thread yet. nt!KeInsertQeueueApc, which is used to schedule APCs, will set 

this field to 1. 

Initial APC Scheduling 
All kinds of APCs are queued to their thread by calling nt!KeInsertQueueApc. The steps performed by 

this function are the same, regardless of the type of APC for which it is called. 

This function takes as input 4 stack parameters: 

 A pointer to the _KAPC structure for the APC. 

 Two user-defined values SystemArgument1 and SystemArgument2 

 A priority increment 

nt!KeInsertQueueApc begins by acquiring a spinlock stored in the _KTHREAD for the target thread 

and raising the IRQL to 0x1b, i. e. profile level. Thus the rest of its operation can be interrupted only 

by the clock and IPI interrupts. 

Afterwards, it looks into a bit field at offset 0xb0 of the _KTHREAD for the target thread, to see if bit 6, 

i. e. ApcQueueable is set. If it’s not, it aborts returning 0 (i. e. FALSE) to its caller.  

The function then checks whether the Inserted field of the input _KAPC is already set to 1 and, if so, 

returns FALSE. 

If the two checks above are successful, the APC is actually scheduled as follows. 

The function copies the input SystemArgument1 and 2 into the corresponding fields of _KAPC. These 

value will be passed to the APC callbacks and offer a way to pass them context information when 

scheduling the APC, in contrast with NormalContext, whose value is set at _KAPC initialization time. 

Afterwards, it sets _KAPC.Inserted to 1 and calls nt!KiInsertQueueApc with edx set to the input 

priority increment and ecx set to the address of the _KAPC. 
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nt!KiInsertQueueApc performs the greater part of the APC scheduling process, which will be analyzed 

in distinct sections for the different APC kinds. 

Special And Regular Kernel Mode APCs 

Scheduling 

The scheduling performed by nt!KiInsertQueueApc can be split into two main steps: linking the 

_KAPC to a list of pending APCs and updating control variables for the target thread so that it will be 

diverted to process the waiting APC. 

Linking _KAPC to Its List 

The function begins by examining again _KAPC.ApcStateIndex. By now, we know that when 

nt!KeInitializeApc is called to initialize the _KAPC, this field is set from the Environment parameter 

and that the value 2 is a pseudo-value, which has the effect to set it to whatever environment is 

current at the time of the call. 

nt!KiInsertQueueApc allows for yet another psudo-value, 3, which has the same effect: if 

ApcStateIndex is found to be 3, it is replaced with _KTHREAD.ApcStateIndex at the time of the call. 

Thus, 2 means current at the time of nt!KeInitializeApc, while 3 means current at the time of 

nt!KiInsertQueueApc. 

The final value of _KAPC.ApcStateIndex is used to select the environment to which the _KAPC will be 

linked. nt!KiInsertQueueApc accesses the _KTHREAD for the target thread at offset +0x14c, where 

we find ApcStatePointer, i. e. the array of two pointers to _KAPC_STATE structures (see APC 

Process Context). ApcStateIndex is used as the array index to select the correct pointer and the 

_KAPC will be linked to the selected _KAPC_STATE. 

The _KAPC_STATE structure is as follows: 

   +0x000 ApcListHead      : [2] _LIST_ENTRY 

   +0x010 Process          : Ptr32 _KPROCESS 

   +0x014 KernelApcInProgress : UChar 

   +0x015 KernelApcPending : UChar 

   +0x016 UserApcPending   : Uchar 

 

The ApcListHead array contains the head of the two APC lists for kernel mode and user mode. 

nt!KiInsertQueueApc uses the _KAPC.ApcMode field as an index into it (thus ApcListHead[0] is for 

kernel mode APCs) and links the _KAPC to the list. 

The list for kernel mode APCs, is for both regular and special ones. A special kernel mode APC is 

linked to the list head, i. e., ahead of any eventual regular kernel mode APC already present. If other 

special APCs are already in place, the new one goes behind them (but still ahead of any regular one). 

Directing The Thread to Execute The APC 

In this section we are going to look at how the target thread is diverted to execute the APC. This is 

where the APC software interrupt may be used. As we are going to see, the interrupt is actually used 

only in particular cases, and control variables are used as well. 

The first step of this process is to check whether the APC environment specified by 

_KAPC.ApcStateIndex is equal to the current environment, specified by _KTHREAD.ApcStateIndex. 
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If the two are not the same, the function just returns. This looks interesting: nothing is done to divert 

the target thread from its execution path. On one hand, it makes sense: as long as the thread is 

attached to a different environment, it can’t process the APC being scheduled. On the other hand, this 

means that the code which switches the thread to a new environment will check whether there are 

APCs in the list for it and act to divert the thread to service them. 

This is the first of many cases where the APC interrupt is not used. 

This logic means that kernel mode APCs, even special ones,  are kept waiting until the thread 

switches environment on its own accord. 

If the environments match, nt!KiInsertQueueApc goes on to check whether the APC is for the 

currently executing thread, i. e. the one inside the function itself.  

Kernel APC for The Current Thread 

For this scenario, nt!KiInsertQueueApc sets KernelApcPending to 1 in the ApcState member of the 

target _KTHREAD. 

As wa saw in the section titled APC Process Context, ApcState stores the main APC environment, i. 

e. the one currently active. Since we have already deterrmined that our APC is for the active 

environment, we access the control variables for it directly from the ApcState member, instead of 

using the environment index and the pointer array _KTHREAD.ApcStatePointer.  

KernelApcPending is a very important flag, which plays a crucial role in breaking into the execution of 

the thread and making it deliver the APC. 

The SpecialApcDisable Flag 

After setting this flag, nt!KiInsertQueueApc checks the flag _KTHREAD.SpecialApcDisable: if it’s not 

0, the function returns. 

This means SpecialApcDisable can disable all kinds of kernel mode APCs, including special ones. 

When will then the APC be dispatched? Part of the answer can be found in nt!SwapContext. This 

function is executed to load the context of a thread after it has been selected to run and checks the 

KernelApcPending flag: if it is set and if SpecialApcDisable is clear, it triggers APC dispatching for the 

thread. We will see in greater detail later how this happens. For now, let’s just keep in mind that 

having KernelApcPending set guarantees to have APC dispatched the next time the thread is 

scheduled to run (providing that SpecialApcDisable has been cleared in the meantime). 

This begs the question of what happens if the current thread clears its own SpecialApcDisable: do  

pending APCs have to wait until it passes through nt!SwapContext or are they fired right away? If we 

try setting a breakpoint on write accesses to SpecialApcDisable for a thread of the system process, 

we discover there are several kernel functions which update this field, so, there is no single 

“EnableApc” function which clears it. 

However, all the functions I catched in a random test, update SpecialApcDisable according to the 

following pattern. To disable APCs, they decrement it when it is 0, therefore bringing it to 0xffff. To 

reenable them, they increment it, then check if the final value is 0. If this is the case, they check 

whether the list for kernel mode APCs has any and, if so, call a function named 

nt!KiCheckForKernelApcDelivery. 

This function triggers kernel APC delivery for the current thread. If the IRQL is passive, the function 

raises it to APC and calls nt!KiDeliverApc (detailed in a later section), which delivers the APCs. 
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Otherwise, sets _KTHREAD.ApcState.KernelApcPending = 1 and requests an APC interrupt, which 

will call nt!KiDeliverApc when the IRQL drops below APC. We will add a few more detail about this 

interrupt in a short while. 

Hence, at least in the functions I observed (nt!NtQueryInformationFile, nt!KeLeaveGuardedRegion, 

nt!IopParseDevice), kernel APCs are serviced as soon as SpecialApcDisable is zeroed, if the IRQL 

allows it. 

The APC Interrupt 

Now let’s get back to nt!KiInsertQueueApc. We just analyzed what happens if 

_KTHREAD.SpecialApcDisable is not 0; if, on the other hand, it is 0, the function requests an APC 

software interrupt by calling hal!HalRequestSoftwareInterrupt, then quits. 

Before exploring the effect of this interrupt, let’s note that the actions performed by 

nt!KiInsertQueueApc when the APC is for the current thread, are the same, both for regular and 

special kernel mode APCs. Hence, the restrictions on regular APCs, which are dispatched only when 

certain conditions apply, are implemented into nt!KiDeliverApc, as we will see later. 

The APC interrupt can’t be processed right now, because inside nt!KiInsertQueueApc the IRQL is at 

0x1b, but will eventually click when the IRQL is lowered inside nt!KeInsertQueueApc. When this 

happens, nt!KiDeliverApc is called. 

This leads us to an interesting question. In the time between the interrupt request and its servicing, 

the timer keeps interrupting the processor, given that its IRQL is 0x1c, higher than the current one. 

The handler for this interrupt could detect that the quantum for the current thread has expired and 

request a DPC software interrupt to invoke the thread dispatcher.  

In this scenario, when the IRQL is lowered to PASSIVE, there are two outstanding software interrupts: 

the DPC and the APC one, with the former having a higher IRQL and therefore taking priority.  

Thus, the dispatcher is invoked, which may select a different thread to run. Eventually, the IRQL will 

drop to PASSIVE and the APC interrupt will click, in the context of the wrong thread. However, two 

steps in the overall APC logic save the day. 

 The first one is the APC dispatcher, nt!KiDeliverApc, which is ultimately invoked by the APC interrupt, 

and allows for the case of being called and finding that there are no APCs in the list. If this happens, it 

just returns. Thus, when invoked for the wrong thread it’s harmless. 

Still, we may think we are at risk of “loosing” the APC for the right thread, given that the interrupt is 

now gone. This is not the case, because the KernelApcPending flag is still set and nt!SwapContext 

will look at it when the original thread will get its chance to run again, re-triggering a call to 

nt!KiDeliverApc. 

Can The APC Interrupt Really Break into The Wrong Thread? 

The test driver for this article, for which more details can be found in the appendix, shows how the 

scenario of the previous section can actually happen. The test function for this test is 

ApcSpuriousIntTest. 

This function installs hooks at the beginning of nt!SwapContext and nt!KiDeliverApc, which track when 

these functions are called, along with some data at the time of the call. Then it raises the IRQL to 

DISPATCH, schedules the APC and wastes time waiting for the DISPATCH interrupt to be requested. 

Afterwards, it lowers the IRQL to passive, having both the APC and DPC interrupts outstanding. The 

driver writes to the debugger console  a trace of what happens.  
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We are now going to analyze a trace captured with it. It begins with the APC being initialized, then the 

first captured event we see is the call to SwapContext: 

APCTEST - Thr: 0X851D2030; APC initialized: 0X850F7A9C 

 

APCTEST - SWAP CONTEXT trace 

 

 

APCTEST -  Current IRQL:                    0x1b 

APCTEST -  Current thread:                  0X851D2030 

APCTEST -  Current thread K APC pending:    1 

APCTEST -  Current thread K APC list empty: 0 

APCTEST -  Current thread U APC pending:    0 

APCTEST -  Current thread U APC list empty: 1 

 

APCTEST -  New thread:                      0X84CBB460 

APCTEST -  New thread K APC pending:        0 

APCTEST -  New thread K APC list empty:     1 

APCTEST -  New thread U APC pending:        0 

APCTEST -  New thread U APC list empty:     1 

 

APCTEST -  APC INT:                         1 

 

The SwapContext trace shows the IRQL at which the function runs (0x1b), then some data on the 

current thread (the one about to be suspended). First  of all we see that this thread is indeed the 

same one which initialized the APC (0X851D2030), then we see that the KernelApcPending flag for it 

is set to 1 and that its kernel APC list is not empty (this is shown by the 0, i. e. false, value on the 

corresponding line). 

Then we see that the new thread (0X84CBB460), has KernelApcPending clear, an empty kernel APC 

list and the same goes for the user APC data. This tells us that this thread has no APC to deliver. 

Finally, the line labeled “APC INT” shows the status of the APC interrupt flag at the time of the trace: it 

is set, meaning that the APC interrupt resulting from nt!KeInsertQueueApc is pending. 

After the swap context we see a call to nt!KiDeliverApc traced: 

APCTEST - DELIVER APC trace 

 

 

APCTEST -  Current IRQL:                    0x1 

APCTEST -  Caller address:                  0X81BB42F7 

APCTEST -  Trap frame:                      00000000 

APCTEST -  Reserved:                        00000000 

APCTEST -  PreviousMode:                    0 

 

APCTEST -  Thread:                          0X84CBB460 

APCTEST -  Thread K APC pending:            0 

APCTEST -  Thread K APC list empty:         1 

APCTEST -  Thread U APC pending:            0 

APCTEST -  Thread U APC list empty:         1 
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This trace shows that  the now current thread is indeed the same that nt!SwapContext was about to 

resume before, and confirms once more that this thread has no pending APCs of any kind. 

Thus, we can see that this APC interrupt really is a spurious one: it occurred because it was pending, 

but occurred in the wrong thread, so it is useless. It is also harmless, because nt!KiDeliverApc returns 

without causing any more trouble. 

The remainder of the trace shows that nt!SwapContext is called to resume the original thread, which 

still has its pending APCs, then, even though there is no outstanding APC interrupt, nt!KiDeliverApc 

gets called and finally delivers our APC. This is confirmed by the fact that we see the trace from the 

kernel routine: 

APCTEST - SWAP CONTEXT trace 

 

 

APCTEST -  Current IRQL:                    0x1b 

APCTEST -  Current thread:                  0X84CBB460 

APCTEST -  Current thread K APC pending:    0 

APCTEST -  Current thread K APC list empty: 1 

APCTEST -  Current thread U APC pending:    0 

APCTEST -  Current thread U APC list empty: 1 

 

APCTEST -  New thread:                      0X851D2030 

APCTEST -  New thread K APC pending:        1 

APCTEST -  New thread K APC list empty:     0 

APCTEST -  New thread U APC pending:        0 

APCTEST -  New thread U APC list empty:     1 

 

APCTEST -  APC INT:                         0 

 

APCTEST - DELIVER APC trace 

 

 

APCTEST -  Current IRQL:                    0x1 

APCTEST -  Caller address:                  0X81BB42F7 

APCTEST -  Trap frame:                      00000000 

APCTEST -  Reserved:                        00000000 

APCTEST -  PreviousMode:                    0 

 

APCTEST -  Thread:                          0X851D2030 

APCTEST -  Thread K APC pending:            1 

APCTEST -  Thread K APC list empty:         0 

APCTEST -  Thread U APC pending:            0 

APCTEST -  Thread U APC list empty:         1 

 

APCTEST - KERNEL ROUTINE trace 

 

 

 

APCTEST -  Thread:                          0X851D2030 

APCTEST -  Thread K APC pending:            0 

APCTEST -  Thread K APC list empty:         1 

APCTEST -  Thread U APC pending:            0 
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APCTEST -  Thread U APC list empty:         1 

APCTEST - TRACE MESSAGE: Returned from KeLowerIrql 

 

Finally, the last trace line is a message written right after the call to KeLowerIrql returns, indicating 

that all of the above took place while we were inside this function: as soon as the IRQL was lowered, 

the thread was preempted by the DISPATCH interrupt, it regain control later, delivered its APC 

because of the APC interrupt, and finally resumed execution, returning from KeLowerIrql. 

This shows how the “state” information that a kernel APC is pending is actually stored in 

KernelApcPending, which is a per-thread flag and not in the fact that an APC software interrupt is 

outstanding. The software interrupt is merely an instrument to attempt to trigger APC dispatching. In 

another test performed with the driver, which will be detailed later, we will see how APCs start to fire 

merely by setting KernelApcPending, without requesting any software interrupt. 

Kernel APC for Another Thread 

For this scenario, nt!KiInsertQueueApc acquires another spinlock protecting the processor control 

block (_KPRCB) of the executing processor. Note that inside this function we already have a lock 

protecting the APC lists for the thread; now we are synchronizing accesses to the processor data 

structures as well. 

Afterwards, the function sets KernelApcPending inside ApcState, which ensures the APC will 

eventually fire at some point. 

It then checks the state of the target thread, which, in this scenario, is not the one executing 

nt!KiInsertQueueApc.  

The thread state is stored in the State member of the _KTHREAD structure and its documented 

values include READY (1), RUNNING (2), WAIT (5). There are also undocumented values like 

DEFERREDREADY (7 - for a thread ready to run for which a processor must be found) and 

GATEWAIT (8 - a different kind of wating state). 

The next sections describe the behaviour of nt!KiInsertQueueApc for the different thread states. 

APC Targeted at A RUNNING Thread 

If the thread state is RUNNING, it must be executing on another processor, because we already know 

it is a different thread from the one executing nt!KiInsertQueueApc, thus an IPI (Interprocessor 

Interrupt) is sent to its processor, to trigger an APC interrupt for that thread. As in the previous 

section, we are not totally sure that this interrupt will be serviced by the target thread, but its 

KernelApcPending variable will keep track of the APC for as long as it takes. 

It is interesting to observe that the IPI is requested by calling nt!KiIpiSend with the following register 

values: 

Ecx = a bitmask corresponding to the number of the processor stored in the NextProcessor field of 

_KTHREAD for the target thread. This suggests that this field stores the identifier of the processor 

running the thread (a fact confirmed by an analysis of nt!KiDeferredReadyThread, which is the 

function responsible to choose a processor for a ready thread). 

Edx = 1. Given that an APC interrupt is being requested, with APC IRQL being 1, this suggests that 

edx stores the IRQL for the interrupt to be sent to the target processor. 



15 

 

Before requesting the IPI, nt!KiInsertQueueApc releases the spinlock for the current processor; after 

the call to nt!KiIpiSend, it returns. 

APC Targeted at A WAIT THREAD 

A waiting thread is not eligible to run because it entered the WAIT state. Under certain conditions, 

nt!KiInsertQueueApc awakens it and sends it to execute the APC. Thus, when possible, the APC 

does not have to wait until the thread enters the running state to be dispatched. 

nt!KiInsertQueueApc begins by comparing the WaitIrql member of the target _KTHREAD with 0, i. e. 

PASSIVE IRQL. If WaitIrql is not 0, nt!KiInsertQueueApc exits. 

This gives us an interesting insight on this _KTHREAD member: when a thread enters the WAIT 

state, this member records the IRQL it was running at, before transitioning to WAIT. 

This is further confirmed by an analysis of nt!KeWaitForSingleObject, which stores into this member 

the current IRQL before calling the dispatcher routines which will put the thread into the WAIT state. 

So, while it’s true that the IRQL is not related to threads, but, rather, is an attribute of a processor (at 

any given time a processor is running at a given IRQL), it’s also true that the IRQL that was current 

when the thread went into waiting is recorded here. 

Hence, the reasoning behind nt!KiInsertQueueApc is straightforward: if the thread was not running at 

PASSIVE it was running at APC and as such APC interrupts were masked for it. Thus, it cannot be 

sent to service an APC interrupt, because this would break the IRQL-based interrupt masking rule. 

As a side note, for a waiting thread WaitIrql should either be PASSIVE or APC, because a thread 

running at IRQL greater than APC cannot enter the WAIT state. 

As always, the fact that KernelApcPending is set guarantees that when the right conditions will apply, 

the APC will eventually be delivered. 

If the thread is indeed waiting at PASSIVE, nt!KiInsertQueueApc checks SpecialApcDisable: if it’s not 

0, it exits without awakening the thread. 

If, on the other hand, APCs are enabled and this is a special kernel mode APC, nt!KiInsertQueueApc 

awakens the target thread; it will be resumed by nt!SwapContext and will dispatch the APC.  

If this is a regular kernel mode APC, two additional checks are performed. 

First, the KernelApcDisable member of the target _KTHREAD is checked: if it’s not 0, 

nt!KiInsertQueueApc exits without awakening the thread. Thus, KernelApcDisable acts like 

SpecialApcDisable, but for regular APCs only. 

The second check involves the KernelApcInProgress member of ApcState: again, a non-zero value 

causes nt!KiInsertQueueApc to exit. 

We will see in nt!KiDeliverApc that it sets this flag before calling the normal routine for a regular APC. 

This test means that if the thread entered the WAIT state while it was in the middle of a regular APC, 

it will not be hijacked by another regular APC. In other words, regular APC calls can’t be nested. 

We saw earlier that when the APC is targeted at the current thread, nt!KiDeliverApc is invoked 

(through the interrupt) regardless of the APC type, regular or special, which may seem in contrast with 

this behaviour. However, nt!KiDeliverApc performs the same checks and avoid dispatching a regular 

APC if either of these two flags is set. This means that not awakening the thread is a performance 

optimization: even if the thread had been awakened, it would not dispatch regular APCs. 
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Thread Awakening And nt!KiUnwaitThread 

If nt!KiInsertQueueApc decides to awaken the thread, it does so by calling nt!KiUnwaitThread and this 

unveils an interesting piece of information. 

The DDK documentation states that when a waiting thread is dispatched to process a kernel mode 

APC, it will reenter the WAIT state afterwards, i. e., the thread does not return from the KeWaitFor… 

function after the APC. On the other hand, the DDK also states that a waiting thread dispatched to 

process a user mode APC returns from the waiting function with a return value of 

STATUS_USER_APC. 

By analyzing the code for user mode APCs, we can see that nt!KiUnwaitThread is used as well and, 

before calling it, the value 0xc0 is loaded into edx. This value is the same as STATUS_USER_APC. 

On the other hand, for kernel APCs, edx is loaded with 0x100. 

The ntstatus.h file defines STATUS_USER_APC as 0xc0 and, immediately below, 

STATUS_KERNEL_APC (not mentioned in the DDK help) as 0x100. This suggests that edx is loaded 

with a value that controls how the waiting function will behave: if it is STATUS_USER_APC, the 

waiting function will return to the caller, passing this value along; if it is STATUS_KERNEL_APC, it will 

resume the wait, the caller will never see this value and for this reason it is an undocumented one. 

Another input parameter to nt!KiUnwaitThread is the priority increment that nt!KiInsertQueueApc 

received from its caller. Interestingly, if nt!KiInsertQueueApc had to spin in loops waiting for 

synchronizing locks, this value was incremented on each iteration, meaning the priority is boosted 

even more, to compensate for the time spent waiting. 

Having awakened the target thread, nt!KiInsertQueueApc releases the spinlock for the processor 

control block and exits. 

APC Targeted at A GATEWAIT Thread 

GATEWAIT state, whose value is 8, appears to be another kind of waiting state. 

For such a thread, nt!KiInsertQueueApc begins by synchronizing on the ThreadLock member of the 

target thread. This is used like a spinlock, without actually calling the regular spinlock functions: the 

processor spins in a loop until it succeeds in modifying its value exclusively. 

Having acquired the lock, nt!KiInsertQueueApc checks whether the thread state is still GATEWAIT or 

has changed and, if the latter is true, exits (releasing all the locks). This is consistent with the fact that 

for states other than RUNNING, WAIT and GATEWAIT, nt!KiInsertQueueApc does nothing more than 

setting KernelApcPending (which at this point has already been done). 

This suggests that ThreadLock protects the thread State: functions changing State do so only after 

having acquired the lock. 

Afterwards, nt!KiInsertQueueApc goes through the same checks it does for WAIT-ing threads: 

WaitIrql must be PASSIVE, SpecialApcDisable must be clear and either this is a special APC or 

KernelApcDisable is clear, along with KernelApcInProgress. 

If all the checks pass, nt!KiInsertQueueApc does a sort of unwaiting of the thread all by itself. It 

unchains the thread from a list to which is linked by means of its WaitBlock[0] member and puts it into 

DEFERREDREADY state, like nt!KiUnwaitThread does for WAIT threads.  

nt!KiInsertQueueApc also sets the WaitStatus member of _KTHREAD to 0x100, i. e. the same “wating 

return” value passed to nt!KiUnwaitThread for WAIT threads. nt!KiUnwaitThread does something 
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similar: stores the value it receives into WaitStatus, albeit by ORing the new value (passed into edx) 

with the current one. It could be that there are higher bits in the WaitStatus field which 

nt!KiUnwaitThread needs to  preserve. 

Furthermore, nt!KiInsertQueueApc chains the thread to a list pointed by the DeferredReadyListHead 

member of the _KPRCB structure for the executing processor. 

An analysis of nt!KiReadyThread and nt!KiDeferredReadyThread shows that DEFERREDREADY is a 

state in which a thread ready to run is placed, before choosing the processor on which it will run; from 

DEFERREDREADY the thread will go into READY if the chosen processor is busy running another 

thread or into STANDBY if the processor can immediately start executing the thread. 

Thus, both nt!KiUnwaitThread and nt!KiInsertQueueApc start the same transition which will result in 

the thread becoming RUNNING and dispatching its APCs. 

WAIT Threads vs GATEWAIT Ones 

It is interesting to compare the steps nt!KiUnwaitThread goes through for WAIT threads, with the one 

taken by nt!KiInsertQueueApc for GATEWAIT ones. 

Thread Waiting Lists 

For a WAIT thread, nt!KiUnwaitThread unlinks the thread from the objects it is waiting on. The thread 

is linked to them through a list pointed by its WaitBlockList member, so nt!KiUnwaitThread walks this 

list and unchains each node from its object.  

These wait blocks, are explained in [2], p. 164. They are used to link a thread to the objects (events, 

mutexes, etc) it is waiting on, allowing for the fact that a thread can wait on multiple objects and each 

object can have more than one thread waiting on it. 

To implement this m:n relationship, each thread has a list of wait blocks, where each node represents 

an object the thread is waiting on. A wait block is a _KWAIT_BLOCK structure with this layout: 

   +0x000 WaitListEntry    : _LIST_ENTRY 

   +0x008 Thread           : Ptr32 _KTHREAD 

   +0x00c Object           : Ptr32 Void 

   +0x010 NextWaitBlock    : Ptr32 _KWAIT_BLOCK 

   +0x014 WaitKey          : Uint2B 

   +0x016 WaitType         : UChar 

   +0x017 SpareByte        : UChar 

 

The NextWaitBlock field chains the wait blocks of a single thread to one another. 

The Object field points to the object the thread is waiting on. 

When there are more than one thread waiting on the same object, the wait blocks pointing to that 

object are chained in a list by means of their WaitListEntry member. 

In other words, a wait block may be part of two lists: the list of wait blocks of a thread and the list of 

wait blocks of an object. 

nt!KiUnwaitThread walks the thread list through the NextWaitBlock member and unchains each 

_KWAIT_BLOCK.WaitListEntry from the list of the object. 

nt!KiInsertQueueApc does something different for GATEWAIT threads. 
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It uses the GateObject member of _KTHREAD which points to a _KGATE structure. _KGATE, in turn 

has just one member: Header, which is a _DISPATCHER_HEADER. 

The first byte of Header is used to synchronize with other processors, in the same way as a spinlock 

would be: the function spins in a loop until it succeeds in exclusively updating it. _KGATE is therefore 

used as a syncronization lock. 

Having acquired the lock, nt!KiInsertQueueApc unlinks the thread from a list to which is chained by 

means of its WaitBlock[0] member. Thus GATEWAIT threads are also part of a list, but pointed by a 

different member of _KTHREAD.  

WaitBlock[0] is itself of type _KWAIT_BLOCK, i. .e the same type used for WAIT thread. Here, 

however, WaitBlock[0] is embedded into _KTHREAD, while for WAIT threads a list of 

_KWAIT_BLOCK is pointed by _KTHREAD.WaitBlockList. 

Furthermore, a GATEWAIT thread is simply unchained from the list pointed by 

WaitBlock[0].WaitListEntry. For a WAIT thread, the entire list of wait blocks is walked (through 

NextWaitBlock) and each node is unchained from the list for the target object. 

It is also interesting to note that the _KTHREAD.GateObject member used to access the 

synchronizing gate is actually the same member which stores _KTHREAD.WaitBlockList: the 

definition for _KTHREAD places both fields in union at offset 0x64: 

… 

   +0x064 WaitBlockList    : Ptr32 _KWAIT_BLOCK 

   +0x064 GateObject       : Ptr32 _KGATE    

   +0x068 KernelStackResident : Pos 0, 1 Bit 

… 

 

We can understand that nt!KiInsertQueueApc is treating offset 0x64 as a pointer to a _KGATE, 

because it uses its first byte for synchronization purposes. If the pointer were for a _KWAIT_BLOCK, 

the first byte would be part of a pointer variable; instead, for a _KGATE, the first byte is a byte value 

named Type (it’s actually the first byte of the embedded _DISPATCHER_HEADER). 

This means that the same pointer has two different meanings, depending on the thread state. 

Thread Priority Boost 

 nt!KiUnwaitThread also applies a priority boost to thread; nt!KiInsertQueueApc does nothing similar 

for a GATEWAIT thread. 

Checking for Outswapped Processes And Stacks 

nt!KiUnwaitThread brings the thread out of WAIT by calling nt!KiReadyThread. This function does 

more than blindly changing the state to DEFERREDREADY. It checks whether the owning process is 

outswapped and, if this is the case, initiates inswapping for it. 

If the process is resident, nt!KiReadyThread checks whether the thread stack is outswapped, by 

testing _KTHREAD.KernelStackResident. If it’s not, puts the thread into TRANSITION and queues it 

for stack inswapping. 

Otherwise if the stack is resident, nt!KiReadyThread puts (at last!) the thread into 

DEFERREDREADY. 
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On the other hand, nt!KiInsertQueueApc does not bother with any of these checks for GATEWAIT 

threads: it just sets their state to DEFERREDREADY. This means GATEWAIT-ing thread cannot have 

their stack outswapped and cannot be part of outswapped processes. 

APC Targetd at Threads in Other States 

For all other thread states, nt!KiInsertQueueApc exits.  

However, it does so after having already set the KernelApcPending flag. 

Triggering Thread Dispatching 

As we saw earlier, nt!KeInsertQueueApc is the function used to schedule APCs, which internally calls 

nt!KiInsertQueueApc. When the latter returns, nt!KeInsertQueueApc has some more work to do. 

We saw that nt!KiInsertQueueApc may awaken a thread that was in WAIT or GATEWAIT state. When 

this happens, the thread is placed into the DEFERREDREADY state and chained to the list of 

deferred ready threads for the executing processor (_KPRCB.DeferredReadyListHead). This means 

that the thread can run, i. e. nothing is blocking it, but a processor must be chosen to run it. To 

accomplish this, nt!KeInsertQueueApc calls nt!KiExitDispatcher.  

The logic of nt!KiExitDispatcher is not covered in detail here, because it could fill an article by itself; 

however, this function calls nt!KiDeferredReadyThread for each thread in the deferred ready list, 

assigning it to a processor. Some of these threads may be assigned to a processor which is currently 

executing another thread with a lower priority of the one being assigned. If this is the case, the former 

thread must be preempted, thus, nt!KiDeferredReadyThread sends an IPI (interprocessor interrupt) to 

the chosen processor. It may also occur that nt!KiDeferredReadyThread assignes the awakened 

thread to the executing processor (the one executing nt! KeInsertQueueApc) and determines that the 

current thread must be preempted. This is taken care of by the remainder of nt!KiExitDispatcher, 

which, in this case, calls nt!KiSwapContext (which in turn calls nt!SwapContext). 

The overall effect is that the thread dispatcher re-assesses which threads are going to run, to account 

for the threads awakened by DPCs. 

Delivery 

After nt!KeInsertQueueApc has run, nt!KiDeliverApc will eventually be called to process the APC. 

This may happen because an APC software interrupt has been requested, or because 

nt!SwapContext detects it is resuming a thread with ApcState.KernelApcPending set and 

SpecialApcDisable clear. 

In the latter situation, nt!SwapContext checks the IRQL at which the thread about to be resumed was 

running, when it was suspended. This IRQL value is stored on the thread stack, so nt!SwapContext 

pops it from there while restoring the thread context. 

The popped IRQL can be either PASSIVE or APC (a thread can’t be preempted when is running 

above APC). If nt!SwapContext finds out that the thread is returning to PASSIVE, returns 1, which 

tells its caller to call nt!KiDeliverApc right away. If, on the other hand, the thread is returning to APC, 

nt!SwapContext returns 0, but before leaving requests an APC interrupt. When the IRQL will drop to 

PASSIVE, the APC interrupt will fire and nt!KiDeliverApc will be called. 

The APC interrupt may still fire after the thread has been preempted again. This is not a problem, 

however, because the next time nt!SwapContext will resume the thread, the process will be repeated. 
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nt!KiDeliverApc is called at APC IRQL and takes three stack parameters. We will call them 

PreviousMode, Reserved and TrapFrame, as in [1]. For kernel mode APCs only the first one is used 

and it is set to KernelMode (i. e. 0) to tell nt!KiDeliverApc it is being invoked to deliver kernel mode 

APCs.  

One of the first things nt!KiDeliverApc does, is copying into a local the address of the _KPROCESS 

for the current process context (_KTHREAD.ApcState.Process). Before leaving, it will compare the 

saved value with the current one, taken again from _KTHREAD and, if they are not the same, it will 

bring the system down with the bug check code INVALID_PROCESS_ATTACH_ATTEMPT. 

Effect of _KTHREAD.SpecialApcDisable Being Set 

nt!KiDeliverApc begins by zeroing ApcState.KernelApcPending and, only afterwards, it checks if 

_KTHREAD.SpecialApcDisable is set. If this is the case, it returns without dispatching APCs and 

leaving ApcState.KernelApcPending set to 0. 

This is an important issue: when KernelApcPending is 0, nt!SwapContext does not call 

nt!KiDeliverApc anymore. Even if _KTHREAD.SpecialApcDisable is later cleared, the pending APCs 

are not delivered until someone sets KernelApcPending again (or requests an APC interrupt). 

The test driver accompanying this article demonstrate this behaviour, in the ApcDisableTest function. 

This function initializes a special kernel mode APC, then chains it to the APC list and sets 

_KTHREAD.ApcState.KernelApcPending, without calling nt!KiInsertQueueApc (it updates these data 

structures directly). It also sets _KTHREAD.SpecialApcDisable. 

ApcDisableTest then invokes a wait function, to ensure thread dispatching takes place and 

nt!SwapContext gets a chance to run for the thread. 

The APC KernelRoutine writes a message on the debugger console, so we see that the APC is not 

delivered during the wait, due to SpecialApcDisable being set. 

After the wait, ApcDisableTest shows that KernelApcPending is still set, which is consistent with the 

fact that nt!KiDeliverApc is not even called for this thread. 

ApcDisableTest goes on by explicitly calling nt!KiDeliverApc. We see that the APC is not delivered, 

but after nt!KiDeliverApc returns, KernelApcPending is clear. We have thus reached the situation 

where, until someone sets it again, the pending APC will not be delivered. 

This is confirmed by the fact that ApcDisableTest clears SpecialApcDisable, then waits for a few 

seconds; during the wait, the APC is not delivered. 

Finally, ApcDisableTest, sets KernelApcPending and waits again. We see the KernelRoutine 

message telling us that the APC has been delivered. 

This test also confirms that when KernelApcPending is set, APC delivery occurs without even 

requesting the APC interrupt, providing that APCs are not disabled. 

Normally, when SpecialApcDisable is set, nt!KiDeliverApc is not even called. For instance, 

nt!SwapContext does not trigger nt!KiDeliverApc in this situation. The test confirmed this, when we 

saw that KernelApcPending was still set after the first wait. 

However, the fact that nt!KiDeliverApc bothers to check SpecialApcDisable suggests that this 

scenario could happen; when this is the case, the pending APCs will stay there until something sets 

again ApcState.KernelApcPending. 
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In a previous section titled The SpecialApcDisable Flag, we saw a behaviour of the functions which 

clear SpecialApcDisable consistent with how the flag is treated here. These functions check whether 

there are kernel APCs pending by inspecting the list, not by checking KernelApcPending. This 

accounts for the fact that this flag might have been cleared by nt!KiDeliverApc. Furthermore, these 

functions call nt!KiCheckForKernelApcDelivery, which either calls nt!KiDeliverApc or raises an APC 

interrupt. In the latter case, the function sets KernelApcPending before requesting the interrupt. The 

logic behind this is that when SpecialApcDisable is cleared, KernelApcPending is set for good 

measure, in case it had been cleared by nt!KiDeliverApc. As a final note, when 

nt!KiCheckForKernelApcDelivery calls nt!KiDeliverApc directly, does not bother to set 

KernelApcPending, because it’s useless: this flag is used when we want nt!SwapContext to call 

nt!KiDeliverApc at some later time and the latter clears it in its early stages. 

Kernel APC Delivery When SpecialApcDisable Is Clear 

nt!KiDeliverApc goes on by checking whether there really are APCs in the list for kernel mode ones 

(ApcState.ApcListHead[KernelMode]). If the list is empty, it just returns (assuming it had been invoked 

with PreviousMode = KernelMode). 

Otherwise, the function acquires the spinlock stored at _KTHREAD.ApcQueueLock (for the current 

thread) and makes sure that there still are pending APCs, leaving if there are none. 

It then goes on by copying into local stack variables KernelRoutine, NormalRoutine, NormalContext, 

SystemArgument1, SystemArgument2. 

If this is a special APC, it is then unchained from the list; afterwards the spinlock is released and the 

KernelRoutine called, with pointers to the local copies of the APC parameters. 

Since the APC has already been unchained and the pointers passed to the KernelRoutine are for 

local copies of the APC data, the KernelRoutine can safely deallocate the _KAPC instance, if it wants 

to do so. 

Aftewards, the kernel APC list is checked again, to see if there are any more waiting APCs and, if so, 

the process repeats itself from the spinlock acquisition. 

Conversely, if a regular kernel mode APC is found, before unchaining it from the list 

_KTHREAD.KernelApcInProgress and _KTHREAD.KernelApcDisable are checked: if etiher one is not 

0, the function terminates. We must remember that nt!KiDeliverApc can assume there are no more 

special APCs when it finds a regular one, because these are inserted in the list behind the special 

ones, so the function can terminate. 

We will resume this point later, but the overall logic is easier to understand if we first look at what 

happens when these two flags are clear. 

As is the case for a special APC, the regular one is unchained from the list, the spinlock is released 

and the KernelRoutine is called with addresses of local copies of the APC parameters. Indeed, 

regular APCs have a KernelRoutine, just like special ones. 

When the KernelRoutine returns, nt!KiDeliverApc checks to see whether it has zeroed the 

NormalRoutine pointer (KernelRoutine received the pointer address, so it is free to modify it). If this 

happened, nt!KiDeliverApc loops to the next APC in the list, so for this one nothing more is done. 

Otherwise, nt!KiDeliverApc sets _KTHREAD.KernelApcInProgress (one of the two flags tested 

before), lowers the IRQL to PASSIVE, and calls the NormalRoutine passing it NormalContext, 

SystemArgument1 and SystemArgument2. Interestingly, the address of NormalRoutine is taken from 
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the same pointer passed to KernelRoutine, which, therefore, has a chance to change the pointer and 

cause a different NormalRoutine to be executed. 

When NormalRoutine returns, nt!KiDeliverApc raises the IRQL back to APC, clears 

KernelApcInProgress and loop to the next APC, leaving if there are none. 

Let’s focus back on the two checks on KernelApcDisable and KernelApcInProgress. 

If either is found set, nt!KiDeliverApc terminates with ApcState.KernelApcPending clear, thus APC 

delivery won’t happen again until someone sets it. 

If this happens because KernelApcDisable was set, it means that the code which clears the flag will 

probably take care of setting ApcState.KernelApcPending again. 

If this happens because KernelApcInProgress was set, the scenario is a bit different. Given that 

KernelApcInProgress is set by this very function before calling the APC normal routine, when we find 

it set, it means we have re-entered nt!KiDeliverApc while it was in the middle of a normal APC 

dispatching. 

We therefore return from this nested call to nt!KiDeliverApc, the outer call will at some point be 

resumed and the APC dispatching loop will go on. Put in other words, leaving KernelApcPending 

clear does not matter, because we are still in the middle of nt!KiDeliverApc – the outer call. 

But how come that nt!KiDeliverApc can be re-entered? Why is not protected by the IRQL rules? After 

all, the code invoking nt!KiDeliverApc does so only when the IRQL is below APC and this should 

prevent re-entrancy issues. 

The point is that, as we just saw, nt!KiDeliverApc lowers the IRQL to PASSIVE to call the 

NormalRoutine, therefore unprotecting itself from nested APC interrupts. When the NormalRoutine 

executes at PASSIVE anything can happen: there is no IRQL protection in place. 

In this nt!KiDeliverApc is quite special: it is not so common for a function to lower the IRQL below the 

value at which it is called. Normally, a function will perhaps raise it, then bring it back to its value. 

Setting the IRQL below the initial value means unmasking interrupts the caller of the function migth 

not expect. Apparently, Windows is built so that nt!KiDeliverApc is always called in situations where 

bringing the IRQL all the way down to PASSIVE does no harm. 

Given how this works, the KernelApcInProgress flag looks like a way to protect NormalRoutines from 

re-entrancy: even though the IRQL is not protecting them (they run at PASSIVE, after all), 

nt!KiDeliverApc does. A NormalRoutine writer can safely assume his routine will not be re-entered in 

the context of the same thread. It is nonetheless possible for it to be re-entered in the context of 

another thread, because at PASSIVE thread dispatching is free to occur and ApcState. 

KernelApcInProgress is a per-thread flag. 

A further point of interest is that KernelApcDisable is checked in the middle of the dispatching loop, 

which means an APC KernelRoutine or NormalRoutine could conceivably set it and cause the loop to 

be aborted. 

Finally, it’s worth noting that special APCs are chained ahead of regular ones, therefore, when we find 

the first regular APC, which might cause the loop to be aborted because of a set KernelApcDisable, 

all the special APCs have already been processed. 
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Special Vs. Regular Kernel APCs 

On the subject of how regular APCs are limited, nt!KiDeliverApc has the final say: it is this function 

which decides when such an APC will be delivered. 

The function enforces the following rules: 

 When the NormalRoutine of a regular APC is in progress, (ApcState.KernelApcInProgress != 

0), other regular APCs are not delivered to the same thread. Even if the thread catches an 

APC interrupt and enters nt!KiDeliverApc. 

 When ApcState.KernelApcDisable !=0, regular APCs are not delivered.  

If nt!KiDeliverApc is called with ApcState.KernelApcDisable != 0, KernelApcPending is left 

zeroed, which prevents further calls to the function on context switches. nt!KiDeliverApc will 

be called again when KernelApcPending is set, perhaps by queuing another APC. 

 Regular APCs have both a KernelRoutine and a NormalRoutine. The first is called at APC 

IRQL, the second at PASSIVE. 

The KernelRoutine is called first and can change the address of the NormalRoutine that will 

be invoked or avoid the call altogether, by zeroing the NormalRoutine pointer. 

Furthermore, the logic of nt!KiInsertQueueApc implies that: 

 When a regular APC is queued to a wating thread, the thread is not awakened if: 

o The NormalRoutine of another regular APC is in progress on the thread 

(ApcState.KernelApcInProgress != 0) 

This implies that the NormalRoutine can enter a wating state and know for sure that 

the thread will not service other regular APCs during the wait. 

o KernelApcDisable has a non-zero value. 

It is interesting to note how the DDK states that the conditions under which a waiting thread receives 

regular APCs are: 

“thread not already in an APC, thread not in a critical section” 

Thus, “in a critical section” KernelApcDisable is set to a non-zero value. 

User Mode APCs 
This section analyzes the scheduling and delivery of user mode APCs. 

The main difference between these APCs and kernel mode ones is that their NormalRoutine is 

executed in user mode, so the APC implementation has to switch to ring 3 before calling 

NormalRoutine. 

Scheduling 

As for kernel mode APCs, the scheduling performed by nt!KiInsertQueueApc can be split into two 

main steps: linking the _KAPC to a list of pending APCs and updating control variables for the target 

thread so that it will process the waiting APC, when the right conditions apply. 
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Linking _KAPC to Its List 

The APC environment is selected in the same way this is done for kernel mode APCs: here too  

ApcStateIndex = 3 specifies the environment which is current when nt!KiInsertQueueApc is executing. 

The APC is then chained to the tail of the list for the selected environment (except for the special user 

APC detailed later). Note that each environment has two distinct lists: one for kernel mode APCs, 

another for user mode ones. 

Directing The Thread to Execute The APC 

As for kernel mode APCs, this stage begins  by checking whether the APC is for the current 

environment and, in case it’s not, the function leaves. User mode APCs directed at another 

environment remain pending, probably until the next environment switch. 

If the APC is for the current thread, the result is the same: nt!KiInsertQueueApc simply exits. This 

makes sense if we recall when user mode APCs are dispatched: when a thread is waiting and 

alertable. Since the current thread is executing nt!KiInsertQueueApc, it is obviously not waiting, so 

nothing can be done at this time. 

This leads us to a question: what if this thread attempts to enter an alertable wait after 

nt!KiInsertQueueApc has returned? It’s likely that the wait functions will have to account for this 

possibility, otherwise the thread could be left waiting alertably, yet with pending APCs. We will see in 

a later section how this scenario is handled. 

If the APC is for another thread, nt!KiInsertQueueApc goes on by acquiring the spinlock at  

LockQueue in the _KPRCB of the executing processor, and checking whether the target thread is in 

WAIT state. For any other thread state, nt!KiInsertQueueApc leaves. This again shows how  user 

APCs have an immediate effect only if the target thread is waiting, otherwise they are left pending. 

If, however, the thread is waiting, the WaitMode field is compared with 1: if it has a different value, 

nt!KiInsertQueueApc stops. Indeed, the DDK states that a waiting thread receives user mode APCs 

only if it is waiting in UserMode, which is defined to be 1 in wdm.h, so the compare we are seeing 

implements this criteria. 

The next step is to check whether the Alertable bit  in the MiscFlags member of _KTHREAD is set: if 

this is true, _KTHREAD.UserApcPending is set to 1and  the thread is awakened by calling 

nt!KiUnwaitThread, with edx set to 0c0h (STATUS_USER_APC); nt!KiUnwaitThread also receives the 

priority boost passed to nt!KiInsertQueueApc, which will be applied to the awakened thread. 

The steps above mean that when the thread is waiting in user mode and alertable, it is awakened with 

UserApcPending set to 1. As we are about to see, this flag will trigger the APC delivery process. 

nt!PsExitSpecialApc and The Special User APC 

nt!KiInsertQueueApc treats in a special way a user mode APC whose KernelRoutine is 

nt!PsExitSpecialApc.  

First of all, sets _KTHREAD.ApcState.UserApcPending to 1, regardless of  the state of the thread. 

We will see later how this variable is the one which diverts the thread from its execution path when it 

enters user mode, sending it to deliver user APCs. However, for other user APCs, this variable is set 

only if the thread is found in an alertable wait state and is awakened. For this particular KernelMode 

routine instead, the variable is set regardless of the thread state, which means it will be hijacked as 

soon as it will switch from kernel mode to user mode. 
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Thus, this APC is allowed to asynchronously break into the target thread, something user APCs can’t 

normally do.  

Furthermore, for this KernelRoutine, the APC is queued at the head of the list of pending user APCs, 

while APCs for other KernelRoutines are chained in FIFO order. 

Finally, for this APC, if nt!KiInsertQueueApc finds out that the target thread is in WAIT with WaitMode 

= UserMode, it awakens the thread, regardless of the value of the Alertable bit. Remember that with 

regular user mode APCs, the thread is awakened only if the bit is set. 

These special steps allow the APC to be delivered as soon as possible: if the thread can be 

awakened without breaking kernel mode rules (e. g., a wait with WaitMode = KernelMode cannot be 

aborted, no matter what), it is. At any rate, having UserApcPending set, the thread will service its 

APCs as soon as it goes from kernel mode to user mode. 

Given that Ps is the prefix for process support routine, nt!PsExitSpecialApc looks like a function 

involved in terminating a process, so perhaps it receives this special treatment to signal in a timely 

fashion to a process that it must terminate. 

Triggering Thread Dispatching 

As is the case for kernel mode APCs, nt!KiInsertQueueApc returns to nt!KeInsertQueueApc, which 

invokes the thread dispatcher. The code of nt!KeInsertQueueApc is the same for both kernel and user 

APCs and it has already been covered in the corresponding section for kernel mode ones. 

Delivery 

nt!KiDeliverApc Invocation 

We saw in the previous section that for user mode APC no interrupt is requested, nor is 

KernelApcPending set, so we must ask ourselves how will nt!KiDeliverApc be invoked. 

To answer this question, we must mention a few things about the system service dispatcher. 

Many functions of the Windows API need to call executive services to do their job and do so by calling 

the system service dispatcher, whose task is to switch the processor to ring 0 and figure out the 

service routine to call. 

The SSD switches to ring 0 by executing a sysenter instruction, which transfers control to 

nt!KiFastCallEntry. Befor sysenter-ing, eax is loaded with a number identifying the executive service 

to be called. 

nt!KiFastCallEntry calls the relevant executive service routine, then resumes ring 3 execution by 

means of a sysexit instruction. 

Before doing this, nt!KiFastCallEntry checks whether _KTHREAD.ApcState.UserApcPending is set 

and, if so, calls nt!KiDeliverApc to deliver user APCs, before resuming the user mode execution 

context. 

Thus, if UserApcPending is set, it hijackes the thread when it is about to return to ring 3. 

For instance, a thread which entered an alertable wait state from user mode, by calling 

WaitForSingleObjectEx, resulted in the invocation of an executive service. When the thread is 

unwaited by nt!KiInsertQueueApc, it returns to ring 3 through the SSD code described above and is 

then sent to process user APCs, before finally returning from the wait fuction. 
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Effect of User Mode APCs on Kernel Wait Functions 

The previous section brings us to an interesting detail about the documented DDK wait functions. 

Consider, for instance, the DDK help about KeWaitForSingleObject: among the possible return 

values, STATUS_USER_APC is listed with the following description: 

“The wait was interrupted to deliver a user asynchronous procedure call (APC) to the calling thread.” 

The point is, the user APC has not yet been delivered: it will be, when the thread will re-enter user 

mode.  

Thus, when KeWaitForSingleObject returns, the APC has merely aborted the wait, but it is still to be 

delivered. The wait has been aborted so that the thread can return to user mode and, thanks to 

UserApcPending being set, deliver the APC. 

If the thread were to stay in kernel mode, for instance by entering another wait, the APC would remain 

pending. 

User Mode APC Delivery Test in The Sample Driver 

The sample driver accompanying this article shows this behaviour, by testing different wait cases. The 

driver dispatch function for this test is called ApcUserModeTest. 

This function creates a separate thread which will queue the APC to the one executing it, then enters 

an alertable user-mode wait. The APC-requesting thread executes a function named ApcRequester. 

When ApcRequester queue the APC to the original thread, the latter returns from 

KeWaitForSingleObject with STATUS_USER_APC. However, the APC has not yet been delivered 

and we can confirm this, because the APC kernel routine, when called, writes “Hello from the USER 

APC kernel routine” on the debugger console. We will see that this happens only after 

ApcUserModeTest has returned to user mode. 

Before returning, ApcUserModeTest shows a few more interesting cases. First, it  tries again to enter 

an alertable user-mode wait with KeWaitForSingleObject. However, the function immediately returns 

with STATUS_USER_APC. Thus, once a thread has user APCs pending, it simply can’t enter such a 

wait. 

It then tries a non-alertable user mode wait and, interestingly, the result is the same. This means 

alertability matters only when APCs are requested for a thread which is already waiting: the thread is 

only awakened if the wait is alertable. On the other hand, alertable or not, a thread can’t enter a user 

mode wait if it already has pending user APCs. 

Finally, ApcUserModeTest tries a non-alertable kernel mode wait and this time the thread is put to 

sleep, regardless of the pending APCs. 

After all these tests, ApcUserModeTest terminates, the thread returns to user mode and only then the 

APC is dispatched and we see the debug message from its KernelMode routine. 

Earlier, when examining nt!KiInsertQueueApc for user APCs, we reasoned that the wait functions 

would have had to account for the fact that a thread could call them after APCs have been queued for 

it. This follows from the fact that, for not-waiting threads, nt!KiInsertQueueApc does nothing more than 

chaining the APCs to its list; the target thread is thus free to attempt to enter an alertable user mode 

wait after this. 



27 

 

Kernel mode waiting functions handle this case simply by setting 

_KTHREAD.ApcState.UserApcPending to 1 and returning immediately STATUS_USER_APC. Thus, 

the thread can immediately return to user mode and, in doing this, will deliver the APCs thanks to the 

set UserApcPending. 

The sample driver shows this in his ApcUserModeTest2 function, which confirms that, before 

attempting the wait, UserApcPending is clear, then when the wait function (KeWaitForSingleObject in 

this case) is called, it immediately returns STATUS_USER_APC and UserApcPending is found set. 

Conclusions on User APC Vs. Kernel Wait Functions 

The DDK help explains how waits initiated by kernel wait functions like KeWaitForSingleObject are 

not aborted for kernel APC: the APCs are delivered, if the right conditions apply, then the thread 

resumes its wait. On the other hand, the same documentation details how these wait functions abort 

the wait for user APCs. 

Now we understand why the wait is aborted: inside the wait function, the thread does not deliver user 

APCs. Instead, it returns from the wait function, so that the code following the wait can return to user 

mode, where the APCs will actually be delivered. 

This is probably done because it would be too complex to actually deliver user mode APCs while 

inside the wait function. After all, we are talking about user APCs, whose NormalRoutine must be 

called in user mode. The kernel would have to somehow switch to user mode, deliver the APC, then 

switch back to kernel mode and resume the wait function – not an easy feat. 

The implication is that kernel mode code (e. g. a driver) must “know” this, i. e. it must be written to 

handle the STATUS_USER_APC return code and the fact that it must actually return to ring 3 to allow 

user APCs to be serviced. 

On the other hand, kernel mode APCs can be delivered without aborting the wait functions, because 

they don’t require a switch from kernel mode to user mode. 

nt!KiDeliverApc for User APCs 

We are now going to see what happens when nt!KiDeliverApc is finally called for user APCs. 

First of all, we need to remember that it has three stack parameters: PreviousMode, Reserved and 

TrapFrame. 

When it is called for user APCs, PreviousMode is set to UserMode, i. e. 1, and TrapFrame points to a 

_KTRAP_FRAME structure storing the ring 3 context of the thread. 

The first part of nt!KiDeliverApc does the kernel APC dispatching, regardless of the value of 

PreviousMode. In other words, whenever this function is called, it dispatches kernel mode APCs if 

there are any, then, only if  PreviousMode = UserMode, checks for user mode ones. 

All the actions explained in the section Delivery for kernel mode APCs are taken. If 

_KTHREAD.SpecialApcDisable is set, neither kernel nor user APCs are delivered. 

Also, if nt!KiDeliverApc finds regular kernel mode APCs to deliver and then finds either 

KernelApcDisable or KernelApcInProgress set, it stops delivering APCs and returns, without 

processing user APCs. 

However, when all the kernel APCs have been delivered and their list is empty, nt!KiDeliverApc sets 

to work on user APCs. 
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First of all, it checks _KTHREAD.ApcState.UserApcPending: if it is equal to 0, the function returns.  

Otherwise, nt!KiDeliverApc acquires the spinlock stored at _KTHREAD.ApcQueueLock.  

Then it sets UserApcPending to 0 and copies to locals the APC parameters KernelRoutine, 

NormalRoutine, NormalContext, SystemArgument1, SystemArgument2. Afterwards, it unchains the 

APC from its list. 

Now the _KAPC structure cannot be reached by anyone else, because it is not in the list anymore, so 

nt!KiDeliverApc releases the spinlock. 

After that, the kernel routine is called with the addresses of  NormalRoutine, NormalContext, 

SystemARgument1 and SystemArgument2. 

When KernelRoutine returns, it may have changed the pointer to NormalRoutine, so nt!KiDeliverApc 

checks to see if it is equal to 0. Let’ see what happens when this is not the case, first. 

The function calls nt!KiInitializeUserApc passing to it the input _KTRAP_FRAME address, 

NormalRoutine, NormalContext, SystemArgument1 and SystemArgument2. nt!KiInitializeUserApc will 

alter the thread user mode context stored in the _KTRAP_FRAME and send it to deliver the APC. 

This process will be analyzed in a later section. After this call, nt!KiDeliverApc exits. 

We can now highlight an important detail: nt!KiDeliverApc only delivers one user APC; it does not spin 

in a loop delivering all the APCs in the list. Furthemore, it leaves UserApcPending clear so, unless 

somebody else sets it again, the SSD will not call nt!KiDeliverApc again. 

This is in apparent contradiction with the MSDN documentation about the Win32 APIs for APCs. The 

following excerpt is for QueueUserAPC: 

“When a user-mode APC is queued, the thread is not directed to call the APC function unless it is in 

an alertable state. After the thread is in an alertable state, the thread handles all pending APCs in first 

in, first out (FIFO) order, and the wait operation returns WAIT_IO_COMPLETION” 

We will see how this works in a short while. 

Now, let’s go back to the point where KernelRoutine has been called, and see what happens when 

KernelRoutine zeroes the pointer to NormalRoutine: there is nothing more to do for the current APC, 

so nt!KiDeliverApc checks whether there are other user APCs pending and, if so, sets 

UserApcPending back to 1, then exits. Again, nt!KiDeliverApc does not loop through all the user 

APCs. However, this situation is different from when the NormalRoutine runs, because 

UserApcPending is set to 1. 

By examining the SSD code, we see that, after nt!KiDeliverApc returns, the SSD checks 

UserApcPending and, if set, calls nt!KiDeliverApc again. Thus, if  there are more APCs to process, 

the next one gets its turn. 

nt!KiInitializeUserApc And The User Mode Context  

The job of nt!KiInitializeUserApc is to modify the user mode context of the thread so that, when it 

returns to user mode, it is hijacked to call the NormalRoutine. The user mode context is stored in the 

_KTRAP_FRAME whose address is passed to nt!KiInitializeUserApc. 

To do its job, nt!KiInitializeUserApc allocates room for a _CONTEXT structure on the ring 3 stack, 

whose esp is stored in the _KTRAP_FRAME. While doing this, it probes the user mode stack with the 

documented ProbeForWrite function, to ensure it can be written to. 
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If the stack is not writable, ProbeForWrite raises an exception, which is handled by 

nt!_except_handler4. I suppose it aborts the process, but I did not analyze it. 

The _CONTEXT structure is then filled with the user mode context taken from _KTRAP_FRAME. 

nt!KiInitializeUserApc actually reserves some more room on the user mode stack, below the 

_CONTEXT structure, where it will store the following data before leaving: SystemArgument2, 

SystemArgument1, NormalContext, pNormalRoutine (listed in decreasing addresses order). 

To keep things consistent, nt!KiInitializeUserApc updates the user mode esp into _KTRAP_FRAME 

so that it points at the beginning of the allocated data. This way it is as if the new data had been 

pushed on the stack by user mode code. 

Afterwards, it sets the ring 3 eip stored inside _KTRAP_FRAME to the address of the user mode 

function ntdll!KiUserApcDispatcher and leaves, returning to nt!KiDeliverApc. 

It is important to note that the now we have two values for the ring 3 eip: one inside 

_KTRAP_FRAME, which points to ntdll!KiUserApcDispatcher, the other, inside the _CONTEXT on the 

user mode stack, which has the original user mode eip. 

The eip copy inside _KTRAP_FRAME is the one which matters when execution goes back from 

kernel mode to user mode, so the thread will resume ring 3 execution inside 

ntdll!KiUserApcDispatcher. The _CONTEXT left on the user mode stack will be used by 

ntdll!KiUserApcDispatcher to resume the original user mode context later, after the NormalRoutine 

has been called. 

The picture below shows the user mode stack after nt!KiInitializeUserApc has run: 

 

The padding is added to align the rest of the stack to 4 bytes boundaries. 

nt!KiInitializeUserApc returns to nt!KiDeliverApc, which in turns return to the SSD. The SSD then 

resumes user mode execution, causing ntdll!KiUserApcDispatcher to be called. 

padding 

8 free bytes 

_CONTEXT  

SystemArgument2 

 SystemArgument1 

 NormalContext 

 NormalRoutine 

 

Original user 

mode esp 

Final user mode 

esp 
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User Mode APC Delivery by ntdll!KiUserApcDispatcher 

This user mode function pops the address of NormalRoutine and calls it. NormalRoutine finds on the 

stack NormalContext, SystemArgument1 and SystemArgument2 as if they had been pushed by the 

call. 

Before actually calling the NormalRoutine, ntdll!KiUserApcDispatcher uses the 8 free bytes on the 

user mode stack above _CONTEXT to build an exception handler registration, which is chained at  

the head of the handlers chain. This registration stores the address of 

ntdll!KiUserApcExceptionHandler, which will handle any exception caused by the NormalRoutine. 

When the NormalRoutine returns, ntdll!KiUserApcDispatcher removes the exception registration from 

the handlers chain and calls ntdll!NtContinue, which will set the user mode context from the 

_CONTEXT structure on the stack. Since the eip value inside _CONTEXT is the original pre-APC eip, 

user mode execution will resume at the point it was before the APC was delivered. 

ntdll!NtContinue And The User Mode Context  

ntdll!NtContinue is actually implemented as an executive service, so it just loads into eax the service 

number  (0x37) and invokes the SSD, which, in turn will transfer control to the kernel mode function 

nt!NtContinue.  

As usually, invoking the SSD results in the creation of a _KTRAP_FRAME storing the user mode 

context. nt!NtContinue modifies this _KTRAP_FRAME so that, when returning to user mode, the 

context actually loaded will be the one from the original _CONTEXT structure passed to 

ntdll!NtContinue. 

In most cases, execution will resume inside the user mode portion of the wait function which caused 

the APCs to be delivered in the first place. 

We are finally ready to understand how Windows manage to deliver all the user APCs before actually 

returning from the wait function. This is the question we left open at the end of the section titled 

nt!KiDeliverApc for User APCs 

After having restored the user mode context and just before returning to user mode, nt!NtContinue 

checks whether there are user mode APCs in the thread list and, if so, sets 

_KTHREAD.ApcState.UserApcPending. It then transfers control back to the SSD. 

Thus, the SSD finds the following situation: 

 The user mode context is the original pre-APC one 

 UserApcPending is set if there still are APCs to deliver 

The thread is thus in the same situation it was, before delivering the first APC. If UserApcPending is 

set, the SSD will invoke again nt!KiDeliverApc and the whole APC delivery process will be repeated. 

This cycle will go on until eventually all user mode APCs have been delivered, the SSD finds 

UserApcPending clear and finally resumes the original user mode context. 

At first sight, this process may seem unnecessarily complex: why have nt!NtContinue set 

UserApcPending again instead of simply processing all the APCs inside nt!KiDeliverApc? After all, 

this is what happens with kernel mode APCs. 

However, since user mode APC must run in, well, user mode, nt!KiDeliverApc can’t simply call them: 

it has to alter the user mode context by calling nt!KiInitializeUserApc and then it must allow execution 
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to return to user mode, before the next APC can be dealt with. After all, there is only one 

_KTRAP_FRAME storing the user mode context, so, once it has been manipulated to deliver the first 

APC, it cannot be altered again for the second one. Instead, execution must be allowed to return to 

user mode to deliver the APC and only afterwards the process can be repeated, if there are more. 

Appendix - The Test Driver 

IMPORTANT WARNING 

The test driver which comes with this article does several unhortodox things and is therefore evil, 

nasty, dangerous and likely to crash the system. After consulting the most competent law firms 

around, I have been advised to include the following disclaimer: 

If you are dumb enough to put yourself in a situation where you loose money because of my driver, 

there’s only one thing you can do which is even dumber: asking me your money back. Whatsoever, 

aforementioned – there you go, any serious disclaimer worth its salt must say “whatsoever” and 

“aforementioned” at least once. 

BUT, if you are willing to risk a blue screen here and there, you can reproduce the tests explained in 

this article. 

Seriously, though, the most risky test to run is the spurious interrupt test. The other ones are almost 

safe. 

Furthermore, this test works ONLY for Windows Vista SP1 with no Windows updates applied. It will 

crash any other version of ntoskrnl.exe. It can work on an updated Vista SP1, if the ntoskrnl.exe is still 

the original one. 

Also, the test works only on a uniprocessor machine. Before you start rummaging through your attic in 

search of that ole single core PC, remember you can use the “onecpu” bcdedit datatype to boot with 

one cpu only, or, much safer, you can use a virtual machine. 

Driver Package Contents 

The package contains both the executables and the source for the driver. It consists of a .zip file with 

two main directories: executables and sources. 

The executables are: 

 ApcTest.sys the driver 

 TestClt.exe the client program 

The client program calls the driver with the DeviceIoControl API, passing the code of the test to 

perform. 

The sources directory contains a Visual C++ Express solution. 

You don’t need to have VS installed to edit the code and build the driver. The solution projects can 

just be regarded as subfolders of the overall source tree and all the building is done with the DDK 

build utility or the SDK nmake tool. VS can be used as a text editor and to access the various files 

through the Solution Explorer window, but this is not required. 

The solution is made up of the projects described below. 
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Driver 

This project contains the driver code. See the ReadMe.txt file for details on how to build the driver. 

TestClt 

Project containing the client to invoke the driver. See the ReadMe.txt file for details on how to build 

the client. 

CommonFile 

Shared  files. 

Loading And Running The Driver 

The test client does not load the driver by itself, so some loading utility is needed. 

The one I use and I find very handy is w2k_load.exe by Sven B. Schreiber, originally found on the 

companion CD of his book, Undocumented Windows 2000 Secrets. The CD image can be 

downloaded from Mr. Schreiber site at: 

http://undocumented.rawol.com/ 

In spite of having been written for Windows 2000, w2k_load still works like a breeze under Vista. 

Loading the driver is as simple as entering 

 W2k_load apctest.sys 

And to unload it: 

 W2k_load apctest.sys /unload 

Once the driver is loaded, run TestClt to call it, specifying a command line switch to select the test to 

run.  TestClt without parameters gives the following output, listing the switch values 

Usage: 

 

    TestClt /d - APC disable test 

    TestClt /u - APC user mode test 

    TestClt /2 - APC user mode test #2 

    TestClt /s - APC spurious int test - VISTA SP1 ONLY. OTHER VER => BSOD!!! 

 

    TestClt /h - This help 

What The Driver Can Do 

The driver performs four different APC tests, implemented as dispatch routines for custom I/O control 

codes. Each test writes its output to the kernel debugger, so you will need to run Windows in a kernel 

debug session to see the results. 

APC Spurious Interrupt Test 

This test is described in the section Can The APC Interrupt Really Break into The Wrong Thread? and 

shows how a DPC interrupt can pass ahead of an APC one, causing the latter to occur in the wrong 

thread. 

The code for this test does dangerous things and can crash the system. 

http://undocumented.rawol.com/
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This code works only with the ntoskrnl.exe which is part of Vista SP1. It will almost certainly crash any 

other version of ntoskrnl.exe. 

This code works correctly only on a uniprocessor system. It is possible to boot a multiprocessor 

system in single processor mode with the “onecpu” data type of bcdedit. 

All the output from this test is written to the debugger console, so it is required to run Windows in a 

debug session to see the result. 

To perform this test run: 

 TestClt /s 

Test Code Description 

Hooked Kernel Functions 

To verify that the APC interrupt occur in the wrong thread, the driver installs two hooks in the kernel: 

one at the beginning of nt!SwapContext, the other one at the beginning of nt!KiDeliverApc. 

These hooks are installed by overwriting the first 8 bytes of the functions with an absolute jmp 

instruction to the hook routine. This job is done by assembly language functions enclosed in 

KernelHooks.asm. For instance, SetKDAPHook installs the hook into nt!KiDeliverApc. 

While the hook is being set, interrupts are disabled to prevent the processor from being hijacked, 

which would put as at risk of executing the same machine instructions which are being overwritten. 

However if the system has more than one processor, another processor may stumble on the function 

while it is being modified and crash the system. This is the reason why this code only works on 

uniprocessor systems. 

The hook routines, which are also part of KernelHooks.asm, save the processor state, then call a C 

function (one for each hook) which traces the call. When the C function returns, the hook routine 

restores the processor state, executes a copy of the original instructions that were at the beginning of 

the hooked function, then jumps into the function itself, which will go on executing normally. 

Such an hook is specific to one version of ntoskrnl (in our case, Vista SP1) because the hook routine 

contain a copy of the first instructions of the hooked function and jumps after them to a fixed offset 

into the function. Any variation in the function executable image will result in inconsistent code and a 

jump to a wrong address. 

Furthermore, nt!SwapContext and nt!KiDeliverApc are not exported, so I used their offsets from 

ntoskrnl starting address to compute their run-time address. A different ntoskrnl will not match with 

these offsets, so the hook bytes will be written at a wrong address. 

The hook routines are KDAPHook and SWCNHook inside KernelHooks.asm. 

C Trace Routines 

The hook routines are an interface between the hooked kernel function and the rest of the driver. 

They call C routines which trace the call to the hooked function. KDAPHook calls KiDeliverApcTrace 

and SWCNHook calls SwapContextTrace. 

These tracing functions are called with interrupts disabled and they don’t call any kernel DDI, to be as 

invisible as possible to the system. 
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To trace the call, these routines store information in a static buffer in non-paged memory. The 

functions managing this buffer are enclosed in CircBuffer.cpp. 

Both tracing functions check a static flag named bHookTraceOn: if it’s false, they don’t write anything 

into the buffer. 

KiDeliverApcTrace clears this flag when it detects it has been called in the context of the thread which 

scheduled the APC. This stops the trace when the APC is about to be delivered. 

Both trace routines write “records” into the buffer, i. e. copies of C structures containing the traced 

information. There are different structure types for different trace data and all types begin with a 

RecordType member identifying them. 

 Main Test Function 

The main test function is ApcSpuriousIntTest and begins by initializing a special kernel mode APC. 

 Then it raises the IRQL to DISPATCH, preventing thread dispatching. 

Afterwards, ApcSpuriousIntTest schedules the APC by calling nt!KeInsertQueueApc, which, in turn, 

requests the APC interrupt, because the APC is for the current thread. This interrupt remains pending, 

because it is masked by the IRQL being DISPATCH. 

Then the function spins in a loop waiting until a DPC interrupt is pending as well. This is bound to 

happen when the timer interrupt handler determines that the thread has used all its time slice and 

must be preempted. This interrupt also is masked by the DPC IRQL. 

To detect when a DPC interrupt is pending, we rely on the fact that at + 0x95 inside the _KPCR for 

the executing processor is a byte array of interrupt flags.  

When the byte at 0x95 + 1 is 1, an IRQL 1 (APC) interrupt is pending 

When the byte at 0x95 + 2 is 1, an IRQL 2 (DISPATCH) interrupt is pending 

The presence of this array can be inferred by analyzing the code of functions like 

hal!HalpCheckForSoftwareInterrupt, hal!HalpDispatchSoftwareInterrupt, 

hal!HalRequestSoftwareInterrupt. 

When the DPC interrupt arrives, ApcSpuriousIntTest install the hooks and lowers the IRQL to passive, 

allowing the interrupts to fire. The hooks trace the execution of nt!SwapContext and nt!KiDeliverApc, 

along with the necessary data at the time of the hooked call. 

The APC kernel routine (ApcKernelRoutineSIT) writes a record into the buffer as well, so that we can 

know when it is called with respect to the other traced events. 

Finally, ApcSpuriousIntTest writes a record into the buffer after KeLowerIrql returns. 

Before leaving,ApcSpuriousIntTest removes the hooks and calls DumpTrace which writes the records 

stored in the buffer to the debugger console. 

Sample Trace 

The following is sample trace obtained with the driver: 

APCTEST - Thr: 0X84AD0D78; *** APC SPURIOUS INTERRUPT TEST *** 
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APCTEST - Thr: 0X84AD0D78; APC initialized: 0X84FB11A4 

 

APCTEST - SWAP CONTEXT trace 

 

 

APCTEST -  Current IRQL:                    0x1b 

APCTEST -  Current thread:                  0X84AD0D78 

APCTEST -  Current thread K APC pending:    1 

APCTEST -  Current thread K APC list empty: 0 

APCTEST -  Current thread U APC pending:    0 

APCTEST -  Current thread U APC list empty: 1 

 

APCTEST -  New thread:                      0X84D689F0 

APCTEST -  New thread K APC pending:        0 

APCTEST -  New thread K APC list empty:     1 

APCTEST -  New thread U APC pending:        0 

APCTEST -  New thread U APC list empty:     1 

 

APCTEST -  APC INT:                         1 

 

APCTEST - DELIVER APC trace Spurious APC int in the wrong thread 

 

 

APCTEST -  Current IRQL:                    0x1 

APCTEST -  Caller address:                  0X8181F2F7 

APCTEST -  Trap frame:                      00000000 

APCTEST -  Reserved:                        00000000 

APCTEST -  PreviousMode:                    0 

 

APCTEST -  Thread:                          0X84D689F0 

APCTEST -  Thread K APC pending:            0 

APCTEST -  Thread K APC list empty:         1 

APCTEST -  Thread U APC pending:            0 

APCTEST -  Thread U APC list empty:         1 

 

APCTEST - SWAP CONTEXT trace Swap Context back to the initial thread 

 

 

APCTEST -  Current IRQL:                    0x1b 

APCTEST -  Current thread:                  0X84D689F0 

APCTEST -  Current thread K APC pending:    0 

APCTEST -  Current thread K APC list empty: 1 

APCTEST -  Current thread U APC pending:    0 

APCTEST -  Current thread U APC list empty: 1 

 

APCTEST -  New thread:                      0X84AD0D78 

APCTEST -  New thread K APC pending:        1 

APCTEST -  New thread K APC list empty:     0 

APCTEST -  New thread U APC pending:        0 

APCTEST -  New thread U APC list empty:     1 
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APCTEST -  APC INT:                         0 

 

APCTEST - DELIVER APC trace APC delivery 

 

 

APCTEST -  Current IRQL:                    0x1 

APCTEST -  Caller address:                  0X8181F2F7 

APCTEST -  Trap frame:                      00000000 

APCTEST -  Reserved:                        00000000 

APCTEST -  PreviousMode:                    0 

 

APCTEST -  Thread:                          0X84AD0D78 

APCTEST -  Thread K APC pending:            1 

APCTEST -  Thread K APC list empty:         0 

APCTEST -  Thread U APC pending:            0 

APCTEST -  Thread U APC list empty:         1 

 

APCTEST - KERNEL ROUTINE trace 

 

 

 

APCTEST -  Thread:                          0X84AD0D78 

APCTEST -  Thread K APC pending:            0 

APCTEST -  Thread K APC list empty:         1 

APCTEST -  Thread U APC pending:            0 

APCTEST -  Thread U APC list empty:         1 

APCTEST - TRACE MESSAGE: Returned from KeLowerIrql 

APCTEST - Thr: 0X84AD0D78; WaitCycles = 765646 

 

Atypical Traces 

While testing the driver, I observed two types of atypical traces, which are worth mentioning. 

Trace Without Context Switch 

The first type are traces where the first event traced is the APC delivery in the correct thread. There is 

no traced nt!SwapContext, so no interrupt in the wrong thread. We know that when the IRQL is 

lowered a DISPATCH interrupt is pending, because the driver checks this condition, however we don’t 

see a context switch. 

The explanation is probably that the DISPATCH interrupt did not cause a context switch, perhaps 

because the thread dispatcher chose to let our thread run for another time slice. In general, not every 

DISPATCH interrupt results in a context switch. For instance, we might have come across an interrupt 

raised by a driver which scheduled a DPC, while the thread still had some of its time slice left 

Here is an example of this kind of trace 

APCTEST - Thr: 0X84E96030; *** APC SPURIOUS INTERRUPT TEST *** 

 

 

APCTEST - Thr: 0X84E96030; APC initialized: 0X8511E0EC 

 

APCTEST - DELIVER APC trace The first event is nt!KiDeliverApc 
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APCTEST -  Current IRQL:                    0x1 

APCTEST -  Caller address:                  0X8181F2F7 

APCTEST -  Trap frame:                      00000000 

APCTEST -  Reserved:                        00000000 

APCTEST -  PreviousMode:                    0 

 

APCTEST -  Thread:                          0X84E96030 

APCTEST -  Thread K APC pending:            1 

APCTEST -  Thread K APC list empty:         0 

APCTEST -  Thread U APC pending:            0 

APCTEST -  Thread U APC list empty:         1 

 

APCTEST - KERNEL ROUTINE trace 

 

 

 

APCTEST -  Thread:                          0X84E96030 

APCTEST -  Thread K APC pending:            0 

APCTEST -  Thread K APC list empty:         1 

APCTEST -  Thread U APC pending:            0 

APCTEST -  Thread U APC list empty:         1 

APCTEST - TRACE MESSAGE: Returned from KeLowerIrql 

APCTEST - Thr: 0X84E96030; WaitCycles = 243152 

 

Trace With APC Interrupt Not Outstanding 

The second type of trace is similar to the first sample, where the context switch did occur, but shows 

an interesting difference. 

In all the traces, the nt!SwapContext data also include whether an APC interrupt is pending at the 

time of the call. This is done in order to confirm that nt!SwapContext is actually called while the APC 

interrupt is still outstanding. 

For this type of trace, however, we see nt!SwapContext being called, with the pending APC, but 

without the interrupt: 

APCTEST - Thr: 0X85145388; APC initialized: 0X850AF0EC 

 

APCTEST - SWAP CONTEXT trace 

 

 

APCTEST -  Current IRQL:                    0x1b 

APCTEST -  Current thread:                  0X85145388 

APCTEST -  Current thread K APC pending:    1 the APC is pending 

APCTEST -  Current thread K APC list empty: 0 

APCTEST -  Current thread U APC pending:    0 

APCTEST -  Current thread U APC list empty: 1 

 

APCTEST -  New thread:                      0X84D689F0 

APCTEST -  New thread K APC pending:        0 
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APCTEST -  New thread K APC list empty:     1 

APCTEST -  New thread U APC pending:        0 

APCTEST -  New thread U APC list empty:     1 

 

APCTEST -  APC INT:                         0 no APC int 

 

*** No APC delivery trace afterwards, b/c no APC int. 

 

APCTEST - SWAP CONTEXT trace 

 

 

APCTEST -  Current IRQL:                    0x1b 

APCTEST -  Current thread:                  0X84D689F0 

APCTEST -  Current thread K APC pending:    0 

APCTEST -  Current thread K APC list empty: 1 

APCTEST -  Current thread U APC pending:    0 

APCTEST -  Current thread U APC list empty: 1 

 

APCTEST -  New thread:                      0X84F62D78 

APCTEST -  New thread K APC pending:        0 

APCTEST -  New thread K APC list empty:     1 

APCTEST -  New thread U APC pending:        0 

APCTEST -  New thread U APC list empty:     1 

 

APCTEST -  APC INT:                         0 

 

[...] 

 

We know that: 

 nt!KiInsertQueueApc is called when the IRQL is already DISPATCH, so the APC interrupt 

cannot be serviced before we lower the IRQL to PASSIVE. 

 We lower the IRQL to passive after having set the hooks, so we cannot miss the APC 

interrupt 

 The call to nt!SwapContext cannot have occurred while nt!KiInsertQueueApc was in the 

process of queuing the APC, i. e. before it raised the APC interrupt, because we called 

nt!KiInsertQueueApc at DISPATCH, so no context switch can occur inside it. Besides, even if 

we did not set the IRQL at DISPATCH, nt!KeInsertQueueApc sets it to profile (0x1b) before 

calling nt!KiInsertQueueApc. 

The explanation may be that nt!KiInsertQueueApc found SpecialApcDisable set. When this happens, 

the function does not raise the APC interrupt, although it sets KernelApcPending, which is the 

situation in the trace above. 

But who then set SpecialApcDisable? Possibly, the code handling an hardware interrupt which 

occurred while the test was in progress. Such interrupts were not masked by the DISPATCH IRQL. 
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APC Disable Test 

This test has been introduced in the section Effect of _KTHREAD.SpecialApcDisable Being Set. It 

shows the effect of the SpecialApcDisable flag on nt!KiDeliverApc. To perform this test run the client 

with the command: 

 TestClt /d 

APC User Mode Test And APC User Mode Test #2 

Introduced in the section User Mode APC Delivery Test in The Sample Driver, shows the interaction 

between user mode APCs and the kernel wait functions. To run them: 

 TestClt /u 

 TestClt /2 for #2 

 

All the output is sent to the kernel debugger. 
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